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Abstract. A one-step real-space renormalization group (RSRG) transformation is used to study
the ferromagnetic (FM)q-state Potts model on the two-dimensional (2D) octagonal quasi-
periodic tiling (OQT). The critical exponents of the correlation lengthν for different values
of q and the critical temperature of the Ising model are obtained. The results are shown to be
not sensitive to the choice of parameters. The comparison of the results with previous results
for the OQT and the square lattice (SQL) seems to show that the universal classes of theq-state
Potts models on the OQT and the SQL are the same for the range fromq = 1 to q = 3, in
accordance with previous research.

1. Introduction

The Ising model on 2D periodic lattices has received extensive study [1–3], while research
on 2D quasi-periodic lattices only began with the discovery of quasi-crystals [4]. Most of
the research has been focused on the 2D Penrose tiling lattice (PTL) [5]. Both the Monte
Carlo (MC) method [6, 7] and the RSRG method [8–10], as well as a momentum-space RG
approach [11], suggested that the Ising model on the PTL belongs to the same universal
class as those on the periodic lattices. A MC simulation [12] suggested that the Ising model
on the OQT belongs to the same universal class, too. Yet there was also some evidence
[13] showing that different quasi-periodicities may lead to different universal classes.

As regards the Potts model [14] on quasi-lattices, there were fewer investigations (see
[15] and references therein) reported; thus further studies are still needed.

In this article we have studied theq-state Potts model [14] on the 2D OQT, using a
modification of the RSRG transformation introduced by Sire and Bellisard [16] in their
study of the electron spectrum on this lattice.

The article is organized as follows. In section 2, we introduce the RSRG transformation.
In section 3, the numerical results are obtained and compared with the previous results for
the Ising model on the OQT [12] and the exact results forq-state Potts models on the SQL
[17]. In section 4 we give our conclusions.

§ Author to whom any correspondence should be addressed.
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2. The RSRG transformation

The Hamiltonian of the Potts model [14] is

H(σ) = −
∑
ij

Jij δ(σi, σj ) (1)

in which the spin variableσi can takeq different values,δ(σi, σj ) is the Kroneckerδ-
function, andJij is the coupling constant for the sitesi and j . We study the FM case
corresponding toJij > 0.

It is easy to prove [18] that theq = 1 case is equivalent to the bond percolation (BP)
problem, while theq = 2 case is equivalent to the Ising model.

The OQT has eightfold symmetry [16]. It is made up of two tile units [16]: a square,
and a rhombus with the sharp angle 45◦ (see figure 1). In this lattice, there are seven types
of site (see figure 2).

Figure 1. A part of the OQT showing its self-similarity. The stressed sites are the sites remaining
after the self-similar transformation is applied once to the original lattice.

Figure 2. The seven types of site on the OQT.
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The OQT is self-similar, and can be transformed into itself in one step [16] with the
unit length scale of the lattice inflated by a factorb = √2 + 1 (see figure 1). In this
transformation, three kinds of site, c, s, q, are decimated.

As the incidence of the edges connecting a site c to a site s or q is the largest on the
OQT [16], it is natural to choose this kind of bond as one parameter (denoted byt1) and the
bonds along edges of other kinds as another parameter (denoted byt2), as Sire and Bellisard
did in their paper [16].

The inflated tile may have ‘effective’ bonds along the diagonal lines even when the
pre-renormalized tile does not (see figure 1). Physically speaking, the diagonal bonds can
be interpreted as ‘next-nearest-neighbour’ interactions. Therefore, the diagonal bonds of the
tiles cannot be neglected in the RG transformation.

Figure 3. The graphs of renormalized bonds in the three-parameter RG. The labels ‘ti (R)’ below
the graphs denote the renormalized parameters (or bonds) in the inflated lattice to which the
graphs above them refer. The labels ‘ti ’ in the graphs represent the parameters in the original
lattice, which the bond that the label is attached to denotes. In each graph, the effective TT (see
the text) between the two sites A and B equals the TT of the corresponding renormalized bond.

One can see in figure 1 that the two diagonal lines of a square tile are distinguishable:
one diagonal line connects at least one site of type c while the other one connects two sites
neither of which is of type c. It is apparent in figure 3 that the former directly increases the
connectivity between the sites A and B. So, as a first step this diagonal bond is taken as a
third parameter, denoted byt3.

After some analysis, the three renormalized bonds are obtained as shown in figure 3.
As it is well known that the result obtained by the RSRG method may depend strongly

on the choice of the parameters, it is necessary to increase the number of parameters step
by step to test the stability and reliability of our method.

Firstly, the other diagonal line of the square tile is added (denoted byt4), leading to the
four-parameter RG transformation shown in figure 4.

As a second step, the shorter and longer diagonal bonds of a unit rhombus are introduced
as two new parameters, denoted byt5 and t6, respectively. The six renormalized bonds are
shown in figure 5.

As a further test of our result, another parameter (denoted byt7) is added. The definition
of t7 and the graph of the renormalized bondt7(R) are shown in figure 6. This parameter
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Figure 4. The graphs of the renormalized bonds in the four-parameter RG.

Figure 5. The graphs of the renormalized bonds in the six-parameter RG.

only influences the renormalization oft1 andt2. The graphs of the renormalized bondst1(R)
and t2(R) can in this case be obtained just by addingt7, according to its definition shown
in figure 6, into their graphs shown in figure 5. The graphs of the other four renormalized
bonds are just the same as in figure 5.

To make the RG transformation, we use the break–collapse method (BCM) [17] which
is briefly illustrated below.

In the BCM introduced in reference [17], a convenient parameter called the ‘thermal
transmissivity (TT)’ is defined as follows:

tij = 1− exp(−qJij /kBT )
1+ (q − 1) exp(−qJij /kBT ) (2)

in which kB is the Boltzmann constant andT is the temperature.
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Figure 6. The definition of the bondt7 (in the original lattice) introduced in the seven-parameter
RG, and the graph of the renormalized one.

Since we are studying the FM case (Jij > 0), it is obvious thattij = 0 corresponds to
T = +∞ (or J = +0) while tij = 1 corresponds toT = +0 (or J = +∞).

In the case whereq = 1, this parameter is equal to the occupation probability of the BP
problem [17] while it is the hyperbolic tangent function of the reduced coupling constant
Kij = Jij /kBT in the case whereq = 2.

In the following RG transformation, the TT is considered instead of the coupling
constant, for the two parameters are connected by a one-to-one function which is non-
singular except when the coupling constantJij tends to zero or infinity.

In the BCM [17], the effective TT between two sites A and B connected through a given
graphG, denoted bytAB(G), is a fraction with the denominatorD(G) and the numerator
NAB(G):

tAB(G) = NAB(G)

D(G)
. (3)

For each single bondi connecting two sites A and B, we defineDi = 1 andNi = ti .
For a set of bonds connecting two sites in series, the denominatorDs and numerator

Ns of the effective TT are shown to be [17]

Ns =
∏
i

Ni (4)

Ds =
∏
i

Di. (5)

For bonds connecting two sites in parallel, the denominatorNp and the numeratorDp
are [17]

Np =
{∏

i

[Di + (q − 1)Ni ] −
∏
i

(Di −Ni)
}/

q (6)

Dp =
{∏

i

[Di + (q − 1)Ni ] + (q − 1)
∏
i

(Di −Ni)
}/

q. (7)

For a complex graphG connecting sites A and B which is not simply a combination of
parallel and (or) serial bonds, choosing one bond with the denominatorDj and the numerator
Nj leads to the following results [17]:

NAB(G) = (Dj −Nj)NAB(G
b
j )+NjNAB(G

c
j ) (8)

D(G) = (Dj −Nj)D(Gb
j )+NjD(Gc

j ) (9)
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in which Gb
j is the graph obtained from the original graphG by breaking the bondj (or

settingtj = 0), andGc
j is the graph obtained fromG by setting the two sites that the bond

j connects to be equivalent (or settingtj = 1).
It is clear that with the recursive use of the above method, any given graph can be

reduced to a simple graph consisting of only series and (or) parallel bonds. Thus one can
obtain the effective TT of any given graph connecting two sites using the BCM method.

It should be noted that with the use of the BCM shown above one can, at least in
principle, derive the analytic forms of the RG transformation. However, the derivation is
very complicated. Thus this process is usually transformed into a recursive program and
left for the computer to finish numerically.

3. Numerical results and discussion

Using standard RG analysis, it is easy to obtain the fixed point, the thermal rescaling factor
yT , and the critical exponent of the correlation lengthν = 1/yT .

Table 1. Comparison of the critical exponents of the Potts models on the OQT and the exact
result on the square lattice.νSQ refers to the exact result for the SQL.νA

OQT, νB
OQT, νC

OQT, and

νD
OQT refer to the exponents of the OQT obtained in the three-, four-, six-, and seven-parameter

RG, respectively.νMC
OQT refers to the exponents of the OQT obtained by the MC method.

q 1 2 3 4

νA
OQT 1.2663 0.9275 0.8062 0.7417

νB
OQT 1.2672 0.9387 0.8137 0.7469

νC
OQT 1.2427 0.9716 0.8513 0.7806

νD
OQT 1.2539 0.9737 0.8520 0.7809

νMC
OQT 0.9940

νSQ 4/3= 1.3333 1 5/6= 0.8333 2/3= 0.6667

The critical exponentsν for the q = 1, 2, 3, 4 cases are listed in table 1, together
with the exact results for the SQL and the MC results for the Ising model (theq = 2 Potts
model) on the OQT [12]. One can see that the RSRG results are not very sensitive to the
number of parameters, and are close to the exact results on the SQL.

The case whent1 = t2 and all of the other bonds are broken is just the case studied
by MC simulation [12]. Our result in this case gives the reduced critical temperatures
kBTc/J ≈ 2.31, 2.31, 2.37, 2.37 for the three-, four-, six-, seven-parameter RG, respectively.
It seems that the result tends to approach to the MC simulation result [12]kBTc/J ≈ 2.39
as the number of parameters increases.

To make a further test of the stability of the method, the numerical curves forν(q) for
the rangeq = 1 to q = 4 are calculated (the step length ofq is taken as 0.05). The results
are plotted in figure 7 together with the exact result on the SQL [17]. One can see that the
four curves obtained by the RSRG method are close to each other over the whole range
(curve A and curve B, and curve C and curve D are nearly indistinguishable), which may
serve as evidence of the stability of our results.

Moreover, the four curves are quite close to the exact curve for the SQL in the range
from q = 1 to q = 3, and seem to have a tendency to approach it with increase of the
parameter number. From table 2 one can see this systematic tendency clearly. Thus it
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Figure 7. The curves for the critical exponentν(q) on the OQT obtained by the three-
parameter (curve A), four-parameter (curve B), six-parameter (curve C), and seven-parameter
RG transformations (curve D) and the exact results on the SQL (curve E). In the figure, the
x-coordinate isq and they-coordinate isν(q).

Table 2. A more precise comparison of the critical exponents of the Potts models on the OQT
with the exact result on the square lattice.νSQ refers to the exact result for the SQL.νA

OQT,

νB
OQT, νC

OQT, andνD
OQT refer to the exponents of the OQT obtained in the three-, four-, six-, and

seven-parameter RG, respectively.

q νA
OQT νB

OQT νC
OQT νD

OQT νSQ

1.3 1.1129 1.1232 1.1295 1.1356 1.1965
1.4 1.0757 1.0870 1.1000 1.1050 1.1604
1.5 1.0433 1.0551 1.0734 1.0776 1.1278
1.6 1.0147 1.0267 1.0493 1.0493 1.0529
1.7 0.9893 1.0012 1.0273 1.0305 1.0707
1.8 0.9665 0.9783 1.0072 1.0100 1.0454
1.9 0.9460 0.9576 0.9888 0.9911 1.0219
2.0 0.9275 0.9387 0.9716 0.9737 1.0000
2.1 0.9106 0.9214 0.9558 0.9576 0.9794
2.2 0.8951 0.9055 0.9410 0.9426 0.9600
2.3 0.8809 0.8909 0.9273 0.9287 0.9416
2.4 0.8678 0.8774 0.9144 0.9156 0.9242
2.5 0.8556 0.8649 0.9023 0.9034 0.9076
2.6 0.8443 0.8532 0.8909 0.8919 0.8917

seems that our results give some evidence that theq-state Potts models on the OQT and
SQL belong to the same universal class over the range fromq = 1 to q = 3.

In the vicinity of q = 4, our RSRG results show a systematic deviation from the exact
results for the SQL. This may be a common limitation of the RSRG method; the RSRG
results for the SQL did not agree with the exact results over this range, either [17].
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4. Conclusions

In this paper, theq-state Potts models on the OQT are studied. In order to reduce the
influence of the general limitation of the RSRG method, i.e., the dependence on the choice of
parameters, four RSRG transformations with different choices of parameters are considered.

As shown in table 1 and figure 7, the critical exponentsν obtained are not sensitive to
change of the number of parameters considered.

The reduced critical temperature of the Ising model calculated seems to tend to reach
the MC simulation result [12] with increase of the parameter number.

Moreover, with increase of the parameter number the curve in figure 7 seems to approach
the exact result on the SQL for the range fromq = 1 to q = 3. This systematic tendency
(see table 2) may be considered as support for the reliability of our RG method.

A systematic deviation from the exact results on the SQL with a maximum relative
difference of about 17% in the vicinity ofq = 4 may be attributed to a common limitation
of the RSRG method.

Finally, it should be noted that our RSRG method is not a rigorous one, and further
studies are still needed to obtain more rigid conclusions.
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